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and negative energy states, then the solution for <£ in 
(10a) indicates the relative numbers of particles which 
have been transformed by the interaction from a given 
spin and energy state at some initial time, into other 
states of spin and energy at some later time. In this 
sense, Eqs. (10) for the spinor </> yield more information, 
at least from an interpretive point of view, than Eqs. 
(1) for the bilinear forms v^ and SM. 

The classical equations may be determined in exactly 
the same manner from the asymptotic solutions of the 
Dirac equation (instead of the squared Dirac equation); 
for once we have found an asymptotic solution, $WKB, 
in the form of Eq. (11), Eq. (3) then gives us the 
appropriate WKB approximation to the Dirac equation: 

2MC^WKB = m (VYM+^O^WKB . (18) 
If we write 

2mc^wKB = RrpeiS/h, (19) 

\f/ is easily shown to satisfy the relation ^ = const, and 

I. INTRODUCTION 

IT still seems a fairly common belief that there exist 
no nontrivial charge-current distributions which do 

not radiate, according to classical electromagnetic 
theory retarded potential solutions. However, early in 
this century Sommerfeld,1 Herglotz,2 and Hertz3 con
sidered extended electron models, and established the 
existence of radiationless self-oscillations. In 1933, 
Schott4 showed that a uniformly charged spherical 

1 A. Sommerfeld, Nachr. Akad. Wiss. Goettingen, Math.-
Physik. Kl. Ha Math.-Physik. Chem. Abt. 1904, 99 and 363; 
1905, 201. 

2 G. Herglotz, Nachr. Akad. Wiss. Goettingen, Math.-Physik. 
Kl. Ha Math.-Physik. Chem. Abt. 1903, 357; Math. Ann. 65, 87 
(1908). 

3 P. Hertz, Math. Ann. 65, 1 (1908). 
4 G. A. Schott, Phil. Mag. Suppl. 7, 15, 752 (1933). 

the bilinear forms associated with \p satisfy the following 
relations: 

ic$yli\f'=vlx, (20a) 

iA^767M^ = 5M . (20b) 

In deriving (20), v^ and S^ are denned by Eqs. (14) 
and (16), and the identity (17) is invoked. If we in
terpret the left-hand sides of Eqs. (20) as the velocity 
and spin of a classical particle, we arrive at the classical 
equations. 

III. CONCLUSION 

In this note we have shown that the classical equa
tions of Bargmann, Michel, and Telegdi may be derived 
from either the asymptotic solutions to the Dirac equa
tion or the squared Dirac equation. In a future paper 
we shall discuss quantization of these WKB solutions, 
as well as the many analogies existing between the 
classical theory and the quantum theory of spinning 
particles. 

shell will not radiate while in orbital motion with period 
T, provided the shell radius is an integral multiple of 
cT/2; the orbit need not be circular nor even planar. 
In 1948, Bohm and Weinstein5 found several other 
rigid spherically symmetric distributions which can 
oscillate linearly without radiating. 

In this paper we derive a simple exact criterion for 
absence of radiation, and apply it to moving rigid 
extended charge distributions.6 We find that there are 
many such distributions, some of which may "spin," 
and others which need not be spherically symmetric. 

5 D. Bohm and M. Weinstein, Phys. Rev. 74, 1789 (1948). 
6 In Bull. Am. Phys. Soc. 9, 148 (1964), which I received while 

writing this paper, there appears an abstract by S. M. Prastein 
and T. Erber which implies that some of the content of this paper 
has been worked out independently by these authors. 
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A simple general criterion is developed, using the retarded potentials of classical electromagnetic theory, 
for absence of radiation from arbitrary time-periodic charge-current distributions. The criterion is applied 
to rigid finitely extended distributions of charge which may undergo orbital motion with period T. I t is 
found that, for this type of distribution, the condition for no radiation is that the extent b of the distribution 
be an integer multiple of cT. Some of these distributions may spin while orbiting. There exists at least one 
asymmetric spinning distribution which doesn't radiate under this condition; for this distribution, the 
(constant) spin angular velocity must be proportional to an integer > 0 times c/b. This leads to the result 
that that part of the total (electromagnetic) angular momentum which is associated with the spin angular 
velocity must be an integer > 0 times e2/c times a numerical constant whose value depends on the details 
of the distribution. I t is shown that, when such nonradiating distributions are considered as stable particles, 
there exists an intrinsic uncertainty relation of the same form and with almost the same meaning as that of 
quantum theory. 
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The allowed types of such distributions are severely 
restricted by the condition of no radiation; further, it 
must be true that the finite radius of a rigid volume 
distribution be an integer multiple of cT, where T is 
the period of orbital motion. This last restriction 
implies that the perimeter of the orbit is less than the 
extent of the distribution.4 

We show that there exists (at least) one periodic, 
orbiting, spinning, asymmetric, nonradiating distri
bution. The asymmetry requires that the constant spin 
angular velocity Qt—2irn/T, n integer > 0 ; the con
dition for no radiation is as before b^lcT, I integer > 0 , 
where b is the extent of the distribution. For such a 
distribution it then turns out that the electromagnetic 
spin angular momentum must be an integer times e2/c 
times a numerical constant whose value depends on 
the details of the distribution. (The spin angular 
momentum is taken as that part which involves 0.) 

The postulate that all "particles" have finite size 
leads to an inherent lack of sharpness in the measured 
values of both the position and the velocity of any 
geometrical point associated with a distribution. For 
example, the minimum uncertainty in a position meas
urement must be of the order of the size of the smallest 
particles available for use in measuring devices. If the 
distribution is in a nonradiating orbit, our condition 
for no radiation provides a relation between the 
minimum uncertainties in simultaneously measured 
values of the position and momentum of the center of 
momentum of the distribution. This relation has the 
same form as the uncertainty relation of quantum 
theory. 

Finally, we list and discuss a set of propositions which 
we feel must be at least partially verified before we 
could even hypothesize that existing particles (and 
aggregates) might be formed from nonradiating charge-
current distributions. 

II. FORMALISM 

We consider a given current-charge distribution 
(j,p) which executes periodic motion, period T, localized 
in a finite volume V of space.7 We assume that a time 
and space Fourier decomposition is valid: 

J ( X , 0 = ( 2 T T ) - 3 E fd*kJ(k,n) 
n=-oo J 

Xexp[—i(k'X~o)ni)2, (la) 

P(x,0 = (2TT)-3 E [fflk «»-%.J(k,n) 

Xexp[—i(k-x—o)j)2, (lb) 

where un=2irn/T, n integer. The Fourier coefficients 
for p follow from the continuity relation V • j + dp/d/=0. 
Reality conditions imply that J*(—k, — n) = J(k,n). 
In (lb), the n=0 term must be taken equal to the 

7 If the distribution translates as a whole with constant velocity, 
we can presumably transform to its "rest frame." 

(arbitrary) time-averaged value of p(x,t); this is 
possible because generally k«J(k,0) = 0. In any event 
the n=Q terms of (la), (lb) will not contribute to the 
radiation. 

According to classical electromagnetic theory, the 
retarded potential solutions (A,<p) of the Maxwell 
equations are8 (Lorentz gauge, Gaussian units, c— 1): 

\(x,t)= fffiy I x - y h K y ^ - l x - y l ) , (2) 

with <p the same except that j is replaced by p. 
We take as definition of the rate of radiation R: 

R=lim [dttx2X'S, (3) 

where x is the outward radial unit vector, dtt=smdddd<p 
is the solid angle element, and S is the Poynting vector: 

S - ( 4 T T ) - 1 E X H , (4) 

with E, H the electric and magnetic fields, 

E=-V<p-dA/dt, H = v xA. 

To investigate the radiation we need only keep terms 
in (A,(p) asymptotically proportional to x~l. In view 
of the fact that (j,p) is localized, these are8 

k{x,t)^x~l / d3y j(y, t—x+x-y), (5) 

and similarly for <p. Inserting (1) in (5), we find 

A(x,t)~x~x E n J(<*>nX,n) expicon(t—x), (6) 

and similarly for y\ combining (6), (4), and (3), we find 

R = J2nexpia)n(t—x)\j^icoio)n-.i 

X / dQ J(co^,7) • (xx-l) • l(o>n-A n~l) , (7) 

where I is the idemfactor. 
If R is to be zero for all t, the curly brackets above 

must be zero for all n>0. Certainly a sufficient con
dition for this is that 

J(a)nx,n) = Q, n>0, (8) 

although this condition may not be necessary. Another 
(weaker) sufficient condition is that J(o)nx,n) &x, n>0. 
[We need consider n>0 only, since J(—o)nx, —n) 
= J*(conx,n), and J(0,0) = 0. This last follows because 
J (0,0) is proportional to the time average of the total 
current, which we shall always take to be zero.] 

8 L. Landau and E. Lifshitz, The Classical Theory of Fields 
(Addison-Wesley Publishing Company, Reading, Massachusetts, 
1951), Chap. 9, p. 186. 
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We shall make use of (8) in what follows, since 
J(a)n£,n)ccx corresponds to the trivial case of spheri
cally symmetric radial oscillations. I t seems likely from 
the functional form of the integrand of (7) that one or 
the other of these conditions is also necessary for 2?=0; 
we have not investigated this in detail. 

III. EXAMPLES 

We shall confine our present study to a rigid extended 
(j,p), exemplified by a functional form p(z), z=x—a(t), 
where a(t) is the position vector of the "center" of the 
distribution, and is assumed periodic with period T. 
Also we insist that (j,p) = 0 for | z | > & ; i.e., no charge 
or current outside a spherical surface radius b from the 
center. We assume that p(z) is a continuous function9 

for all z with |z[ <b] if j(z) = a(J)p(z), the continuity 
relation will then hold even at z = b, if we take for this 
point 

l im{[v-j+ap/d*].-&±«}. 

Using j(z) = a00p(z), z=x—a(0 , we find 

rT 

J(o)nx,n) = T l \ dt a(t)[_expi(a)nX'a(t)—toj)] 
Jo 

X / dzy p (y) expio)nx • y. (9) 
J 2/=0 

The problem reduces to finding those p(y) for which 
I(oonx) = 0, where 

I(k) = / <P;yp(y)expik.y; (10) 
J y=0 

this is just the Fourier transform of p(y). 

A. Spherical Symmetry 

By spherical symmetry we mean p(z) = p(s). Then 

I(unx) = I(a)n) = 4:T dy y sm<jonyp(y), (n>0). (11) 
Jo 

1. SchoWs Case 

If e is the total charge on a spherical shell of radius 
r <b, then in this case p(z) = (^irr2)~1ed(z—r). Inserting 
this in (11), we find 

/(wn) = er~l sinconr. (12) 

This will be zero if coir=27rr/T=lT, I integer > 0 . 
Therefore, if r=lcT/2, there is no radiation. This 
condition represents the only restriction; e.g., the 
orbits need not be circular nor even planar. 

9 This assumption is in the spirit of classical field theory, but it 
could raise a large discussion. If all charge distributions must in 
the end be aggregates of point particles, our proof of existence of 
radiationless motions is not strictly valid. Cf. Sec. I l l Al. 

Schott4 derives this same result by an entirely 
different analytical procedure. Bohm and Weinstein5 

use a yet different analysis to achieve (11). Schott also 
gives a good bit of physical reasoning in an attempt to 
educate intuition up to the mathematics. I t is worth 
repeating after Schott that (i) the spherical shell 
cannot "spin" (we also show this later in C of this 
section); (ii) the perimeter of the orbit is vT=2rv/l 
<2irr, where v=average speed < 1 . This means that 
the spherical shell can only "wobble," but not execute 
a large orbit. 

A further illustration might prove useful here. 
Suppose 

N 

i ( x , 0 = Z *o$(x—a«(/))a«(*). 

This corresponds to an aggregate of N point charges, 
each of charge ea. Suppose the N point particles, each 
with ea=e/N, are distributed (perhaps nonuniformly) 
over a spherical surface of radius r. Then aa(/) = a(/) 
+ r « , where a(t) is as before the location of the center 
of the spherical surface. Then 

fT 

J(o)nA>n) = eT~1 / dt a(t)[expi(a)nX'a(t)—oont)2 
Jo 

N 

X Z ) expio>n#-ra. (13) 

Now if 6a is the angle between x and r«, J(a)n£,n) will 
be zero if 

E a expiconr cos0a=O. (14) 

In the limit when N —-> <*> and the distribution is made 
uniform over the surface, we may replace the sum (14) 
by (47r)~ iy*^ expiconr cos#, and we get Schott's result 
(12) immediately. 

This procedure illustrates that if we want the radi
ation to be exactly zero [by the criterion J(wn#,^) = 0 ] , 
we probably cannot built a distribution out of point 
charges. However, it seems that we can generally 
approach J(o>Jt,n) = 0 as closely as we like by packing 
point charges closer and closer (in certain definite 
arrangements) throughout some finite region. A similar 
conclusion has been reached by Ksienski10 in connection 
with antenna radiation patterns. 

2. Volume Distributions 

We develop here a rather general rigid spherically 
symmetric distribution which may orbit periodically 
without radiating. 

Consider p(y) = Ay~l cosa)gy for y<b, zero outside; 
q integer > 0 , A = constant. Then from (11) 

fb 
/ (a>«) = 47rv4 / dy sincony cosco qy. 

Jo 
10 A. Ksienski, Can. J. Phys. 39, 335 (1961). 
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This will be zero by the well-known circular function 
orthogonality provided coi#=27rZ, I integer > 0 . 

Therefore we may use any linear combination of 
terms of this type, and still R=0; i.e., if for y<b 

p(y) = Hqy~1A(q)cos^qyy (15) 

and p(y) = 0 for y>b, where A(q) are arbitrary real 
constants, and if b = lcT, I integer > 0 , there will be no 
radiation due to periodic orbital motion of this 
distribution. 

We show that, as in Schott's case, this distribution 
cannot execute a large orbit. The amount of charge in 
a spherical shell of thickness dy at y is proportional to 
y2p{y) = YLqyA(q) cosco<$>. The function coscog^ is sym
metric about y=b/2. Therefore we could at best choose 
coefficients such that y2p(y) is large near y—b/2, 
nearly zero elsewhere. The perimeter of the orbit is 
vT=vb/l=2(b/2)(v/l)<2w(b/2), where v<l is the 
average speed. So the "radius" of the orbit is less than 
the apparent extent of the charge. 

B. Nonspherically Symmetric Distributions 

We extend formally to the case where p(y) = 0 still 
outside a spherical surface of radius b, but has arbitrary 
angular dependence inside. The criterion for existence 
of radiationless orbits is then, from (10), 

'(< 
Jo 

dzy p (y) expio)nx • y = 0 . (16) 

We expand p(y) in terms of the orthonormal spherical 
harmonics Yim(0',<p')\ 

p(y) = E E RMYUV,*'). (17) 
1=0 m=—l 

Here, 

Ylm(6',<p') = 
'21+11-\m\-]112 

P im (cosd') expi?n<p', (18) 
L 4 J 1+1 m IJ 

where Pjm(cos0') are the associated Legendre polynomi
als.11 The orthonormality is fd£lYVm>*(6,(p)Yim(p,(p) 
= 8mm'f>ii'. Since F i , w =Fj ,_ m *, the reality requirement 
on p implies Ri,-m* = Ri,m-

We express the plane wave expik-y in terms of the 
spherical harmonics, where 6ky=angle between (k,y) n : 

e x p & . y = i ; il(2l+i)jl(ky)Pl(cosdky), (19) 
1=0 

where ji(ky) is the spherical Bessel function of order I. 
Now we use (18), and the addition theorem for Legendre 

11 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955), 2nd ed., Chap. 4, p. 73; Chap. 5, 
p. 104. 

polynomials,12 and find 

expik*y=4ir£ £ (\-¥m,o)ilYi,m(6,<p) 
1=0 m=— I 

XYlm*(d',<P')jl(ky), (20) 

where (6, <p) are polar angles of k, (#', <pf) are polar angles 
of y, with respect to z axis. Then we find for (16) 

I{o>nX) = Y.l,mil(i — ¥m,o)Yim(d,<p) 

i X dyfjl(oyny)Rlm(y), (21) 

which implies that, for radiationless orbits, 

Ilm(< 
Jo 

dyy2ji(a>ny)Rlm(y) = 0. (22) 

This agrees with the spherically symmetric case, since 
jo(x) = smx/x. I t 's easy to show that (22) is satisfied 
for 1=1, \m\ < / , if we choose i?im(y) = ^4im=const for 
y<b, zero outside, and if b=lcT as before. Therefore 
we may choose for p(y) inside y=b 

00 1 

p(y) = E J~lA (q) coswQy+i; AimYlm(6,<p); (23) 
q=0 m=—1 

this distribution will orbit without radiating provided 
a)i=2wb/T=2irl, or b=lcT, I integer > 0 

I t is tempting to assume that interesting solutions 
of (22) could be found for all /. This no doubt would be 
true if the spherical Bessel functions ji(x) had equally 
spaced zeros. Since they do not, we must at present 
conclude that our solutions for 1=0, 1 are accidental. 
We have not tried to find solutions of (22) for / > 1 . 

Possibly we could find nonradiative solutions for 
rigid charge distributions vanishing outside a spheroidal 
or some other nonspherical surface. Rather than pursue 
this, we plan in the future to search for mcuh more 
general nonradiating distributions, involving parame
ters describing several internal degrees of freedom. 

C. Inclusion of Spin 

We add to the current a(t)p(x—a(t)) a term 

y(z)=(axz)g(z), z<b, (24) 

zero outside, where z=x—a(j),fii is a constant angular 
velocity, and g(z) is a spherically symmetric function 
having the dimension of charge density. £We use g(z) 
instead of the actual charge density p{z) to allow for 
nonrigid spinning.] Continuity is automatically satis
fied, since V•]' = $. As previously, we take J'(oonx,n) = 0 

12 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam
bridge University Press, Cambridge, England, 1952), 4th ed., 
Chap. 15, p. 328. 
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as the criterion for no radiation. This is 

rT 

J'(a)n£,n) = T~x J dt£expi(a)n& • a(/)—a)nt)~] 
Jo 

x | - i O - X V k / d3yg(y) expik-y\ . (25) 

The problem reduces to finding those g(y) for which 
I(oonx)==0, where 

I (k) = V k / dzy g (y) expik • y = 4=7rk~3k 
J y=0 

X / dy yg(y) (ky cosky—smky). (26) 

I t is easy to verify that the following expression for 
g(y) makes I(con#) = 0, provided b^lcT as before: 

g(y) = By-\ (27) 

with B an arbitrary real constant. 
We may add together all those distributions we have 

found up to now, and the whole will not radiate, under 
the restriction that the radius of the distribution is an 
integer (times c) times the period of its orbital motion. 

We note that it is immediately apparent from (26) 
that a spinning spherical shell distribution g(y) 
ccd(y—r), r<b3 cannot satisfy I(con#) = 0 for all n>0. 

D. Spin Plus Asymmetry 

We show now that there exists at least one type of 
rigid nonspherically symmetric spinning distribution 
which will not radiate while in orbital motion, provided 
as before that the extent is an integer multiple of the 
period. 

We consider a charge distribution 

p(x,t) = h(z)+g(z) (zi cosfi/+*2 sinO/), z<b, (28) 

and p = 0 for z>b, where, as before, z=x— a(t), with 
a(t) the position of the "center." Here z\ and zi are 
the x and y components of z. As a suitable current 
density we take 

j(x,*) = [ a « + O ( £ 3 x z ) ] p ( x , 0 , (29) 

where x% is a unit vector in the z direction. I t 's easily 
verified that this satisfies continuity. 

These functional forms clearly represent a rigid non-
symmetric distribution which spins with angular speed 
0 about the z axis. We see from (28) that, because of 
the asymmetry, 2w/Q must be commensurate with the 
period of orbital motion To. Suppose that the distri
bution makes at least \/q rotations per orbit, where 
q= integer such that 0<q< oo. Then the necessarily 
finite period of motion T—qTQ. Then it follows that 

0 = 2im/T, n integer > 0. (30) 

Since we have ensured that the distribution is both 
periodic and localized, we may apply the criterion 
J(con£,n) = 0 for no radiation. The current density (29) 
will be a sum of four terms, which we label j ( i ) , i= 1, • • •, 
4. We now analyze the corresponding J ( i )(k,^) . 

First term: j ( 1 ) = a (t)h(z). 

This is of the same form as the current considered in 
Sec. IIIA2. Therefore it will not radiate provided 
b=lcT, I integer > 0 , and 

h(z)-EQ=O°° z~lH{q) coscoQs, (31) 

where H(q) are arbitrary coefficients, and o^q=2irq/T. 

Second term: j ( 2 ) = k(t)g{z) (z\ cos^-f-22 sinfi/). 

This is of the same form as one of those considered in 
Sec. I I I B ; in particular, this current may be written 
in terms of the spherical harmonics Fi,i and Fi,_i. 
Here, the function zg(z) corresponds to the radial 
functions Ri,i or i?i,_i. Therefore this current dis
tribution will not radiate provided b=lcT and 

g(z) = z~1G, G=const. (32) 

Third term: j ( 3 ) = 0 (x 3 x z)h (z). 

This is of the same form as that considered in Sec. I I IC. 
Therefore it will not radiate provided b = lcT, and 

h{z) = Hz-\ H=const. (33) 

This result means that we must set all the H(q) = 0 in 
(31), except H(0). 

Fourth term: j ( 4 ) = 0 (x% X z)g (z) (z\ cosft/+JS2 sinft/). 

This has not been treated before. We investigate 

JW(k,«) = Tt"1 j dttexpi(k-a(t)-a>j)~] 
Jo 

XI ^ ( e x p & . y ) j w ( y , 0 . (34) 
J 2/=0 

From (34), the expression of interest (which should be 
zero for k=conx, n>0), is 

K (k) = / dzy yyg (y) expik • y 
J y=o 

= —VkVk d3yg(y)expik-y. (35) 
J y=0 

We must use the form (32) for g(y), and also use b—lcT; 
making these substitutions in K(k), we find 

K(conf) = M(ir/con
2)b2G. (36) 

This is not zero by itself. However, we may add to the 
distribution (28) another distribution concentric with 
(28) [i.e., ait) is the same for both] , but generally of a 
different radius. If both have the same 12, and bx = licT, 
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b2 = l2cT, and both have the functional forms (32) and 
(33), from (36) there will be no radiation from the total 
distribution provided 

/i2Gi+/22G2=0. (37) 

Therefore there will be no radiation from a charge-
current distribution 

j(x,0 = [a (0+O(£ 3 xz ) ] [p i (x ,0+p 2 (x ,0 ] , (3 8 a) 
where 

pi(x,t) = z~l[_Hi+Gi(zi cosOH-22 sin!2/)], 
0<z<bx; 

p2(x,t) = z~l[H2- (Zi2//2
2)Gi(0i cosQ/+Z2 sinl2/), 

0<z<b2; 

with pi=0 for z>bh p2=0 for z>b2, provided bi = kcT, 
and Sl=2im/T, n integer > 0 . Combining £l = 2im/T 
with bi=kcT, we have for possible values of 12 

12= (2<ircnli/b%) = (27rc/b2)n, (39) 

where b2>bi, n integer > 0 . 
From (38b) it is evident that if we choose bi = b2, the 

distribution reverts to a perfectly spherical one, and 
we lose the condition (39). 

The procedure of adding together several different 
distributions, each of different extent, may help us to 
find other interesting nonradiating distributions. We 
plan to exploit this possibility in the future. 

IV. CONSERVED ELECTROMAGNETIC QUANTITIES 

I t is not at all immediately evident just how to 
extract physical meaning from the above results. I t 
just seems that these results should apply to the real 
world. Especially fascinating to us is the result in Sec. 
H I D for a spinning asymmetric distribution, that the 
spin angular velocity 12 must be 2wc/b times an integer 
> 0 , where b is the over-all extent of the distribution. 
In what follows we show, in the limit of negligible effect 
from the orbital motion, that the condition 12= (2irc/b)n 
implies quite generally that the electromagnetic spin 
angular momentum associated with a given distribution 
must be a numerical constant times e2/c times an 
integer, independent of the size or electromagnetic 
energy content of the distribution. 

We consider the energy, angular momentum, and 
magnetic moment of a finite nonradiating distribution. 
We regard these as completely electromagnetic quanti
ties; as such, they must be constants of the motion of 
the distribution. The general expressions for the electro
magnetic energy density, magnetic moment density, 
and angular momentum density, in terms of the fields 
(E,H) and (j,p) are13 

W= (STT)~1(E2+H2)+ fdt(j-E), (40a) 

13 See any standard treatise on electromagnetic theory; e.g., 
that of Ref. 8. 

m=(2c)~1xxj, (40b) 

M = (4TTC)-1X x (E x H) + J dt x x (pE+c-1] x H ) , (40c) 

where dt is the time differential element. 
The total energy 8, the magnetic moment y, and the 

total angular momentum S, are the integrals over all 
space of these densities. These quantities must be ex
pressible in terms of the three parameters e, c, b, if we 
neglect the influence of orbital motion, and replace 12 
by 2-ircn/b. (Here e is either the total charge of the 
distribution, or, in case of total charge = 0, e is some 
appropriate charge.) I t is clear that, in this limit of 
negligible effect from orbital motion, | j | and | H | are 
proportional to e!2/c, and | E | oc e. Also since in this 
limit we expect very nearly 

j c c & X X , H o c x x ( Q X x ) , E o c x , 

we see that the second terms in (40a), (40c) will make 
negligible contribution to 8 and S. Therefore by di
mensional analysis, with the help of (40), 

8 oc e2b~1l\+ (const.) (M2/c)2] 

= 62ft-1[l+(const.)»2]; (41) 

| p | oc eb (12b/c) oc ebn, (42) 

| S | oc e
2c~l (GJ / C ) oc (e

2/c)n. (43) 

If we choose the "mass" of the distribution by the 
Einstein relation 8=mc2 and solve (41a) for b in terms 
of m, we find from (41) the magnetogyric ratio 
| yt | oc (e/mc) ] S |, as expected. 

The striking feature here is the behavior of the spin 
angular momentum: I t is proportional to e2/c times an 
integer, independent of the mass or size of the distri
bution. The value of the proportionality constant 
depends of course on the details of the distribution; we 
should expect to find it in the neighborhood of 
fic/2e2~ 137/2. 

We have carried through a calculation of 8, ^, and 
S based on a steady (nonorbiting) current density 
j (x) = (ft x x)p (x), p (x) = e/2Tb2x, x< b, zero outside. 
This represents a distribution which would not radiate 
while in orbital motion, provided b = lcT. Of course, 
this one, being steady and spherical, will not radiate 
no matter what the values of 12 or b; however, the very 
slightest asymmetry and orbital motion would then 
require ti = 27rcn/b, n integer > 0 . 

We quote our results merely to show that there is no 
horrible order-of-magnitude disagreement with experi
ence. Using the above (j,p) and standard Maxwell 
theory, plus the known numerical values for the mass 
and charge of the electron, we found (with tt=2ircn/b) 

| S | «10~29n g-cm2-sec-1, 

M ~ 6 ( « / * c ) | S | , (44) 

&«5X10- I 3cm, « = 1 . 
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These values are certainly somewhat anomalous; in 
particular, "Planck's constant" is almost 2 orders of 
magnitude too small, and the magnetogyric ratio is 
6 times too large for the electron. But factors of 6 
or 102 ought to be amenable to change, provided we 
can find other asymmetric spinning distributions satis
fying the same conditions for no radiation. 

V. UNCERTAINTY RELATION 

In this section we show that, for our nonradiating 
distributions, there exists an uncertainty relation 
between momentum and position which has the same 
form as that of quantum theory, and a similar meaning. 

To begin, we must describe a measurement process 
on a distribution. Presumably, if at a given time we 
knew the electromagnetic fields exactly at all points of 
space surrounding the distribution, we could infer 
exactly both the instantaneous position and velocity 
of both the center of the distribution and the center of 
(electromagnetic) linear momentum. (In our previous 
calculations, the origin of coordinates has been taken 
at the center of momentum. This follows because we 
have always chosen the coordinate frame such that the 
total current is zero, and, since there is no radiation 
from the distribution, the total linear momentum must 
then be a constant, equal to zero in that frame.) 

In order to measure the field pattern in actuality, 
we must use field probes of finite size. Naturally we 
would want to use the smallest ones available; in 
principle, these would be of an extent fa, of the order of 
the size of the smallest particles available to us. (At 
present we must regard as a postulate the assumption 
that only finite sized particles exist in nature.) Then 
it seems clear that we must have an inherent uncer
tainty &Xi>bi in the measured value of the ith com
ponent of the position of any geometrical point asso
ciated with a distribution. 

There must also be an inherent uncertainty in our 
simultaneous knowledge of the velocity of any point, 
since a value for velocity must be inferred from the 
same inaccurate field pattern. We assume that just 
before the measurement the distribution is in a radi-
ationless state; i.e., the center of the distribution is 
orbiting about the center of momentum with period T. 
Then the measured ith component of the velocity of 
any point must have an uncertainty Avi>bi/T 
= (fa/fa)lc. (The last equality follows from the con
dition for no radiation, b2=lcT, I integer > 0 , where fa 
is the radius of the distribution.) If the point being 
considered is the center of momentum, we have Api 
^wi2Avi, where m2 is the mass of the distribution. 
Altogether, 

ApiAxi>m2fa
2/T> m2fa

2c/fa. (45) 

As in the preceding section, we consider the mass to 
be electromagnetic. Then we have m2=K/e2/fac2, where 
K! is a numerical constant depending on the details of 

the distribution. Inserting this in (45), we get 

ApiAx^K'W/b^eVc). (46) 

If the distribution is itself of size fa, (fa^fa), then 
ApiAxi>K'(e2/c). This is the case of interest in modern 
physics. 

Suppose that the distribution is large compared to 
fa. We consider roughly that the distribution is com
posed of N "particles" of size fa. Then we may write 

m2=f(N)mi=Kfe2/fac2 = f(N)Ke2/fac2, 

where f(N)<N, / (1) = 1; we take fa~Nl!zfa. Then 
from (46) we find 

ApiAxi>f{N)N-v*K{e2/c). (47) 

We expect that f(N) increases with N faster than Nlf3 

(but of course slower than N), so that ApiAxi>Ke2/c 
in all cases. But (46) and (47) show that our uncer
tainty relation is not necessarily the same for all 
distributions. Actually we know that, for macroscopic 
distributions, the linear extent of a distribution is very 
much greater than the sum of the diameters of the 
constituents. I t is more likely that b2<f(N)b\, than 
that fa^N1/sfa. The former dependence would make 
the uncertainty relation (46) universal. We conclude 
only that the size dependence of (46) is bound to be 
weak. 

Although the functional form of our uncertainty 
relation is identical with that of quantum mechanics, 
the interpretation is somewhat different. In particular, 
we wish to emphasize the implication of a finite mini
mum uncertainty in both position and velocity meas
urements. A fundamental lack of sharpness in position 
measurement was postulated and called an "inherent 
dispersion" in a theory recently developed by 
Ingraham.14 The condition for no radiation makes an 
apparently fortuitous connection between inherent 
dispersions in simultaneous position and velocity 
measurements. 

VI. DISCUSSION 

The crucial result in the preceding sections was that, 
in the limit of negligible effect from the orbital motion, 
the (electromagnetic) spin angular momentum of an 
asymmetric, orbiting, spinning, nonradiating distri
bution must be a numerical constant times e2/c times 
an integer. Naturally, it is very tempting to hypothesize 
from this that the existence of Planck's constant is 
implied by classical electromagnetic theory augmented 
by the conditions for no radiation. Such a hypothesis 
would be essentially equivalent to suggesting a "theory 
of nature" in which all stable particles (or aggregates) 
are merely nonradiating charge-current distributions 
whose mechanical properties are electromagnetic in 
origin. We certainly do not believe that this paper gives 
a sufficient foundation for hypothesizing a theory with 

14 R. L. Ingraham, Nuovo Cimento 24, 1117 (1962). 
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such profound implications. Rather, we hope that 
this paper will serve as a foundation and as a stim
ulus for much further investigation of nonradiating 
distributions. 

With this in mind, we offer a set of propositions 
which we feel must be at least partially verified before 
the above "theory of nature" could even be hypothe
sized. Following each proposition we give a short 
discussion of its implications. 

Proposition (i). There exist many types of periodic, 
nonrigid, asymmetric, spinning, nonradiating volume 
distributions. In real life there exist no stable distri
butions which are perfectly symmetric about the spin 
axis. 

This proposition is necessary to not violate the 
relativity principle (nonrigid) and to ensure that 
Ql~2irn/T (asymmetric). By "nonrigid" we mean 
"capable of changing shape under action of an external 
field." A nonrigid distribution must possess internal 
vibrational modes. Unless all those vibrational modes 
which are normally excited are axially symmetric, the 
distribution will not be. 

Our present knowledge of the structure of macro
scopic matter indicates that energetically stable 
perfectly axially symmetric distributions occur not at 
all. We believe it likely that the structural details of 
microscopic matter mirror those of macroscopic matter. 
(We also believe it likely that this is a philosophical 
sore point.) To investigate this, we propose to consider 
a distribution composed of N point-like charges and 
ask in the limit of very large N, "how must their 
motion be limited in order that there be no radiation 
from the aggregate?" We also plan to consider the 
"collective" approach, in which a relatively small 
number of parameters characterize the distribution. 
The total energy of a nonradiating distribution would 
be a function of these parameters; it might be a func
tion with several local minima. We should try to 
identify the minimum energy nonradiating distributions 
with particles occurring in nature. 

Proposition (ii). All physically reasonable distri
butions satisfy the same condition for no radiation. 
[For example, that of our distributions, whose extent 
must be a positive integer (times c) times the (finite) 
period of motion.] 

This proposition is necessary in order that the 
allowed values of spin angular velocity Q be related 
to the extent b through the relation 0 <x cn/b, n integer 
> 0 . I t seems clear that a relation very close to this 
must be obeyed in general in order that the spin 
angular momentum spectrum be discrete. 

The spin angular momentum spectrum which we 
have obtained (| S | °c n, n integer > 0) differs from the 
intrinsic angular momentum spectrum predicted by 
quantum theory ( | J | oc [n(n-\-l)2112, n half-integer, or 
integer > 0 ) . However, we must remember that we 
foreordained | S | oc % by choosing the spin axis fixed in 

space. If this were not required, it is not clear just what 
would be the details of the spin angular momentum 
spectrum. Nevertheless, it does seem clear that this 
spectrum would be discrete, provided propositions (i) 
and (ii) were satisfied. 

A short discussion might be useful, concerning the 
interplay of orbital and spin angular momentum. 
(Remember that spin angular momentum here means 
that part associated with the spin angular velocity £2.) 
If the spin axis were not fixed, neither the spin nor the 
orbital part of the angular momentum would be 
separately conserved. [ In fact, from Eq. (40c) it is 
evident that in general they probably could not even 
be considered separately.] This would mean that the 
center of a free distribution might well orbit about a 
space-fixed or uniformly translating point. Recently, 
Corben15 has found a similar behavior for free particles, 
according to relativistic classical mechanics. 

Up to now we have been tentatively thinking of the 
spin angular momentum as "intrinsic." The above 
considerations seem to cast some doubt on this corre
lation. Whether we should regard as the intrinsic 
angular momentum the total, the spin, the time 
averaged value of the spin, or some other, remains for 
the moment an open question. 

Proposition (Hi). A "theory of nature" in which all 
stable particles (or aggregates of particles) are formed 
from nonradiating charge-current distributions agrees 
completely with present quantum theory, in domains 
where the latter is valid. 

This is rather a "catch-all" proposition; however, it 
does not supersede propositions (i) and (ii), since it is 
not at all clear that present quantum theory can 
account for the structure of those fundamental particles 
which appear to be extended (or composite). 

In particular, we would like to show an (at least 
approximate) isomorphism between quantum theory 
and this theory. Failing that, we must at least be able 
to explain atomic structure on this theory. We have as 
yet made no progress in these directions. 

In conclusion: There certainly exist, in classical 
theory, nontrivial, nonradiating charge-current distri
butions. Some of their properties are suggestive of a 
possible connection with the quantal structure of 
nature. There remains a tremendous amount of in
vestigation to be done before such a connection could 
be established. 
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